Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root-derived CO(2) efflux via xylem stream rivals soil CO(2) efflux.

Identifieur interne : 003495 ( Main/Exploration ); précédent : 003494; suivant : 003496

Root-derived CO(2) efflux via xylem stream rivals soil CO(2) efflux.

Auteurs : Doug P. Aubrey [États-Unis] ; Robert O. Teskey

Source :

RBID : pubmed:19674328

Descripteurs français

English descriptors

Abstract

Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO(2) flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO(2) released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. On a daily basis, the amount of CO(2) that moved upward from the root system into the stem via the xylem stream (0.26 mol CO(2) m(-2) d(-1)) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO(2) m(-2) d(-1)). We estimated that twice the amount of CO(2) derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO(2) diffuses into the soil atmosphere.

DOI: 10.1111/j.1469-8137.2009.02971.x
PubMed: 19674328


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root-derived CO(2) efflux via xylem stream rivals soil CO(2) efflux.</title>
<author>
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152, USA. daubrey@uga.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O" last="Teskey">Robert O. Teskey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19674328</idno>
<idno type="pmid">19674328</idno>
<idno type="doi">10.1111/j.1469-8137.2009.02971.x</idno>
<idno type="wicri:Area/Main/Corpus">003486</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003486</idno>
<idno type="wicri:Area/Main/Curation">003486</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003486</idno>
<idno type="wicri:Area/Main/Exploration">003486</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Root-derived CO(2) efflux via xylem stream rivals soil CO(2) efflux.</title>
<author>
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152, USA. daubrey@uga.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O" last="Teskey">Robert O. Teskey</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autotrophic Processes (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Cell Respiration (MeSH)</term>
<term>Heterotrophic Processes (MeSH)</term>
<term>Plant Exudates (metabolism)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (metabolism)</term>
<term>Soil (analysis)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dioxyde de carbone (métabolisme)</term>
<term>Exsudats végétaux (métabolisme)</term>
<term>Populus (cytologie)</term>
<term>Populus (métabolisme)</term>
<term>Processus autotrophes (MeSH)</term>
<term>Processus hétérotrophes (MeSH)</term>
<term>Racines de plante (cytologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Sol (analyse)</term>
<term>Transport biologique (MeSH)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Plant Exudates</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Exsudats végétaux</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autotrophic Processes</term>
<term>Biological Transport</term>
<term>Cell Respiration</term>
<term>Heterotrophic Processes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Processus autotrophes</term>
<term>Processus hétérotrophes</term>
<term>Respiration cellulaire</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO(2) flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO(2) released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. On a daily basis, the amount of CO(2) that moved upward from the root system into the stem via the xylem stream (0.26 mol CO(2) m(-2) d(-1)) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO(2) m(-2) d(-1)). We estimated that twice the amount of CO(2) derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO(2) diffuses into the soil atmosphere.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19674328</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>184</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Root-derived CO(2) efflux via xylem stream rivals soil CO(2) efflux.</ArticleTitle>
<Pagination>
<MedlinePgn>35-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1469-8137.2009.02971.x</ELocationID>
<Abstract>
<AbstractText>Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO(2) flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO(2) released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. On a daily basis, the amount of CO(2) that moved upward from the root system into the stem via the xylem stream (0.26 mol CO(2) m(-2) d(-1)) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO(2) m(-2) d(-1)). We estimated that twice the amount of CO(2) derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO(2) diffuses into the soil atmosphere.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aubrey</LastName>
<ForeName>Doug P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152, USA. daubrey@uga.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teskey</LastName>
<ForeName>Robert O</ForeName>
<Initials>RO</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053147">Plant Exudates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>New Phytol. 2009;184(1):4-6</RefSource>
<PMID Version="1">19740275</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D052818" MajorTopicYN="N">Autotrophic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052836" MajorTopicYN="N">Heterotrophic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053147" MajorTopicYN="N">Plant Exudates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19674328</ArticleId>
<ArticleId IdType="pii">NPH2971</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2009.02971.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O" last="Teskey">Robert O. Teskey</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19674328
   |texte=   Root-derived CO(2) efflux via xylem stream rivals soil CO(2) efflux.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19674328" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020